DC/DC Converter

The THL 25WI series is a generation of DC-DC converter modules with high power density. The product achieves 25 Watt output power and comes in a metal case with small dimensions of only 1.0" x 1.0" x 0.4". All models have a wide 4:1 input voltage range and precisely regulated output voltages. High efficiency of up to 90% makes this product very reliable and applicable in temperature ranges of up to +80°C or up to +85°C with optional mounted heat sink. Typical applications are in mobile equipments, instrumentation, distributed power architectures in communication and industrial electronics and everywhere where space on the PCB is critical.

Models

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Input Voltage Range</th>
<th>Output 1 Vnom</th>
<th>Imax</th>
<th>Output 2 Vnom</th>
<th>Imax</th>
<th>Efficiency typ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>THL 25-2410WI</td>
<td>9 - 36 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>87 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>89 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-2411WI</td>
<td>9 - 36 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>87 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>89 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-2412WI</td>
<td>9 - 36 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>87 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>89 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-2413WI</td>
<td>9 - 36 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>87 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>89 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-2422WI</td>
<td>9 - 36 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>87 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>89 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-2423WI</td>
<td>9 - 36 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>87 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>89 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-4810WI</td>
<td>18 - 75 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>88 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-4811WI</td>
<td>18 - 75 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>88 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-4812WI</td>
<td>18 - 75 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>88 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-4813WI</td>
<td>18 - 75 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>88 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-4822WI</td>
<td>18 - 75 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>88 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td>THL 25-4823WI</td>
<td>18 - 75 VDC</td>
<td>3.3 VDC</td>
<td>6'000 mA</td>
<td>-12 VDC</td>
<td>-1040 mA</td>
<td>88 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 VDC</td>
<td>5'000 mA</td>
<td>-15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 VDC</td>
<td>2'090 mA</td>
<td>+12 VDC</td>
<td>1'040 mA</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 VDC</td>
<td>1'670 mA</td>
<td>+15 VDC</td>
<td>840 mA</td>
<td>90 %</td>
</tr>
</tbody>
</table>

Options

Input Specifications

<table>
<thead>
<tr>
<th>Input Current</th>
<th>24 Vin models: 80 mA typ.</th>
<th>48 Vin models: 55 mA typ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- At no load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- At full load</td>
<td>24 Vin models: 950 mA typ. (3.3 Vout model)</td>
<td>1'150 mA typ. (5 Vout model)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1'150 mA typ. (12 Vout model)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1'150 mA typ. (15 Vout model)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1'150 mA typ. (12 / -12 Vout model)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1'150 mA typ. (15 / -15 Vout model)</td>
</tr>
<tr>
<td>48 Vin models: 450 mA typ. (3.3 Vout model)</td>
<td>580 mA typ. (5 Vout model)</td>
<td>580 mA typ. (12 Vout model)</td>
</tr>
<tr>
<td></td>
<td>580 mA typ. (15 Vout model)</td>
<td>580 mA typ. (12 / -12 Vout model)</td>
</tr>
<tr>
<td></td>
<td>580 mA typ. (15 / -15 Vout model)</td>
<td></td>
</tr>
</tbody>
</table>

Surge Voltage
- 24 Vin models: 50 VDC max. (100 ms max)
- 48 Vin models: 100 VDC max. (100 ms max)

Reflected Ripple Current
- 48 Vin models: 30 mAp-p typ.

Recommended Input Fuse
- 24 Vin models: 2'500 mA (slow blow)
- 48 Vin models: 1'250 mA (slow blow)

(The need of an external fuse has to be assessed in the final application.)

Input Filter
- Internal LC-Type

Output Specifications

Output Voltage Adjustment
- ±10% (By external trim resistor)
- See application note: www.tracopower.com/overview/thl25wi
- Output power must not exceed rated power!

Voltage Set Accuracy
- ±1% max.

Regulation
- Input Variation (Vmin – Vmax)
 - single output models: 0.2% max.
 - dual output models: 0.2% max.
- Load Variation (0 - 100%)
 - single output models: 0.2% max.
 - dual output models: 1% max. (Output 1)
 - 1% max. (Output 2)
- Voltage Balance (symmetrical load)
 - dual output models: 2% max.
- Cross Regulation (25% / 100% asym. load)
 - dual output models: 5% max.

Ripple and Noise
- single output
 - 3.3 Vout models: 100 mVp-p max. (w/ 1 µF MLCC || 10 µF Tantalum)
 - 5 Vout models: 100 mVp-p max. (w/ 1 µF MLCC || 10 µF Tantalum)
 - 12 Vout models: 150 mVp-p max. (w/ 1 µF MLCC || 10 µF Tantalum)
 - 15 Vout models: 150 mVp-p max. (w/ 1 µF MLCC || 10 µF Tantalum)
- dual output
 - 12 / -12 Vout models: 150 / 150 mVp-p max. (w/ 1 µF MLCC || 10 µF Tantalum)
 - 15 / -15 Vout models: 150 / 150 mVp-p max. (w/ 1 µF MLCC || 10 µF Tantalum)

Capacitive Load
- single output
 - 3.3 Vout models: 10’300 µF max.
 - 5 Vout models: 6’800 µF max.
 - 12 Vout models: 1’200 µF max.
 - 15 Vout models: 750 µF max.
- dual output
 - 12 / -12 Vout models: 680 / 680 µF max.
 - 15 / -15 Vout models: 380 / 380 µF max.

All specifications valid at nominal voltage, resistive full load and +25°C after warm-up time, unless otherwise stated.

www.tracopower.com November 9, 2023 Page 2 / 4
Minimum Load
Not required

Temperature Coefficient
±0.02 %/K max.

Start-up Time
30 ms max. (Power On)
30 ms max. (Remote On)

Short Circuit Protection
Continuous, Automatic recovery

Output Current Limitation
150% typ. of Iout max.

Overvoltage Protection
118 - 125% of Vout nom. (depending on model)
3.9 VDC typ. (3.3 Vout models)
6.2 VDC typ. (5.1 Vout models)
15 VDC typ. (12 Vout models)
18 VDC typ. (15 Vout models)

Transient Response
- Response Deviation
3% typ. / 5% max. (75% to 100% Load Step)
- Response Time
250 µs typ. (75% to 100% Load Step)

Safety Specifications

Standards
- IT / Multimedia Equipment
 CSA-C22.2, No. 60950-1
 EN 62368-1
 IEC 62368-1
 UL 62368-1
- Certification Documents
 www.tracopower.com/overview/thl25wi

EMC Specifications

EMI Emissions
- Conducted Emissions
 EN 55032 class A (with external filter)
- Radiated Emissions
 EN 55032 class A (with external filter)
 External filter proposal: www.tracopower.com/overview/thl25wi

EMS Immunity
- Electrostatic Discharge
 Air: EN 61000-4-2, ±8 kV, perf. criteria A
 Contact: EN 61000-4-2, ±6 kV, perf. criteria A
- RF Electromagnetic Field
 EN 61000-4-3, 10 V/m, perf. criteria A
 EN 61000-4-4, ±2 kV, perf. criteria A
 EN 61000-4-5, ±1 kV, perf. criteria A
- EFT (Burst) / Surge
 Ext. input component: KY 220 µF, 100 V, ESR 48 mOhm
- Conducted RF Disturbances
 EN 61000-4-6, 10 Vrms, perf. criteria A
- PF Magnetic Field
 Continuous: EN 61000-4-8, 3 A/m, perf. criteria A

General Specifications

Relative Humidity
95% max. (non condensing)

Temperature Ranges
- Operating Temperature
 -40°C to +80°C
- Case Temperature
 -40°C to +85°C (with Heat Sink)
 +105°C max.
- Storage Temperature
 -50°C to +125°C

Power Derating
- High Temperature
 Depending on model
 See application note: www.tracopower.com/overview/thl25wi

Cooling System
Natural convection (20 LFM)

Remote Control
- Voltage Controlled Remote
 (passive = on)
 On: 3.5 to 12 VDC or open circuit
 Off: 0 to 1.2 VDC or short circuit
 Refers to 'Remote' and '-'Vin' Pin
 3 mA typ. = 0.5 to 0.5 mA

Altitude During Operation
6’000 m max.

Switching Frequency
285 kHz typ. (PWM)

Insulation System
Functional Insulation

Isolation Test Voltage
- Input to Output, 60 s
 1'500 VDC
- Input to Output, 1 s
 1'800 VDC

All specifications valid at nominal voltage, resistive full load and +25°C after warm-up time, unless otherwise stated.

www.tracopower.com November 9, 2023 Page 3 / 4
Isolation Resistance - Input to Output, 500 VDC
1'000 MΩ min.

Isolation Capacitance - Input to Output, 100 kHz, 1 V
2'000 pF max.

Reliability - Calculated MTBF
444'000 h (MIL-HDBK-217F, ground benign)

Washing Process
According to Cleaning Guideline
www.tracopower.com/info/cleaning.pdf

Housing Material
Alu alloy, black anodized coating

Base Material
Non-conductive FR4 (UL 94 V-0 rated)

Potting Material
Epoxy (UL 94 V-0 rated)

Pin Foundation Plating
Nickel (2.5 µm min.)

Pin Surface Plating
Gold (75 - 125 nm), glossy

Housing Type
Metal Case

Mounting Type
PCB Mount

Connection Type
THD (Through-Hole Device)

Footprint Type
1" x 1"

Soldering Profile
Lead-Free Wave Soldering
260°C / 10 s max.

Weight
16.5 g

Thermal Impedance - Case to Ambient
17.6 K/W typ.
14.8 K/W typ. (with Heat Sink)

Environmental Compliance - REACH Declaration
www.tracopower.com/info/reach-declaration.pdf
REACH SVHC list compliant
REACH Annex XVII compliant

- RoHS Declaration
www.tracopower.com/info/rohs-declaration.pdf
Exemptions: 7a
(RoHS exemptions refer to the component concentration only, not to the overall concentration in the product (O5A rule))

- SCIP Reference Number
8cb0eff2-677a-444b-b63b-898d682a98b8

Supporting Documents
Overview Link (for additional Documents)
www.tracopower.com/overview/thl25wi

Outline Dimensions

Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Single</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+Vin (Vcc)</td>
<td>+Vin (Vcc)</td>
</tr>
<tr>
<td>2</td>
<td>–Vin (GND)</td>
<td>–Vin (GND)</td>
</tr>
<tr>
<td>3</td>
<td>+Vout</td>
<td>+Vout</td>
</tr>
<tr>
<td>4</td>
<td>Trim</td>
<td>Common</td>
</tr>
<tr>
<td>5</td>
<td>–Vout</td>
<td>–Vout</td>
</tr>
<tr>
<td>6</td>
<td>Remote On/Off</td>
<td>Remote On/Off</td>
</tr>
</tbody>
</table>

Dimensions in mm (inch)
Tolerances: x.x ±0.5 (x.xx ±0.02)

Dimensions in mm (inch)
Tolerances: x.x ±0.25 (x.xxx ±0.01)

Pin tolerances: x.x ±0.05 (x.xx ±0.002)